Summary information and primary citation

7mpl; DSSR-derived features in text and JSON formats
RNA binding protein-RNA
X-ray (1.8 Å)
Bartonella henselae nrnc bound to pgg
Lormand JD, Kim SK, Walters-Marrah GA, Brownfield BA, Fromme JC, Winkler WC, Goodson JR, Lee VT, Sondermann H (2021): "Structural characterization of NrnC identifies unifying features of dinucleotidases." Elife, 10. doi: 10.7554/eLife.70146.
RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonucleotidase, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC employs similar structural features that distinguish these two classes as dinucleotidases from other exonucleases, the key determinants for dinucleotidase activity are realized through distinct structural scaffolds. The structures together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases indicates convergent evolution as the mechanism of how dinucleotidase activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinucleotidase activity further underlines the important role these analogous proteins play for cell growth.

Cartoon-block schematics in six views (download the tarball)

PyMOL session file Download PDB file View in 3Dmol.js