Summary information and primary citation

PDB-id
1br3; DSSR-derived features in text and JSON formats
Class
DNA-RNA hybrid
Method
X-ray (3.0 Å)
Summary
Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme
Reference
Nowakowski J, Shim PJ, Prasad GS, Stout CD, Joyce GF (1999): "Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme." Nat.Struct.Biol., 6, 151-156. doi: 10.1038/5839.
Abstract
The structure of a large nucleic acid complex formed by the 10-23 DNA enzyme bound to an RNA substrate was determined by X-ray diffraction at 3.0 A resolution. The 82-nucleotide complex contains two strands of DNA and two strands of RNA that form five double-helical domains. The spatial arrangement of these helices is maintained by two four-way junctions that exhibit extensive base-stacking interactions and sharp turns of the phosphodiester backbone stabilized by metal ions coordinated to nucleotides at these junctions. Although it is unlikely that the structure corresponds to the catalytically active conformation of the enzyme, it represents a novel nucleic acid fold with implications for the Holliday junction structure.

Cartoon-block schematics in six views (download the tarball)

PyMOL session file Download PDB file View in 3Dmol.js